development of general relativity began with the equivalence principle, under which the states of accelerated motion and being at rest in a gravitational field (for example when standing on the surface of the Earth) are physically identical. The upshot of this is that free fall is inertial motion: In other words an object in free fall is falling because that is how objects move when there is no force being exerted on them, instead of this being due to the force of gravity as is the case in classical mechanics. This is incompatible with classical mechanics and special relativity because in those theories inertially moving objects cannot accelerate with respect to each other, but objects in free fall do so. To resolve this difficulty Einstein first proposed that spacetime is curved. In 1915, he devised the Einstein field equations which relate the curvature of spacetime with the mass, energy, and momentum within it.

Some of the consequences of general relativity are:

- Time goes more slowly in higher gravitational fields. This is called gravitational time dilation.
- Orbits precess in a way unexpected in Newton’s theory of gravity. (This has been observed in the orbit of Mercury and in binary pulsars).
- Rays of lightbend in the presence of a gravitational field.
- Frame-dragging, in which a rotating mass “drags along” the space time around it.

Technically, general relativity is a metric theory of gravitation whose defining feature is its use of the Einstein field equations. The solutions of the field equations are metric tensors which define the topology of the spacetime and how objects move inertially.